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The influences of delayed feedback on the oscillating behaviors are numerically investigated by using the
photosensitive Oregonator model with a Hopf point. We find that the time delay in the robust entrainment
phenomena determines the time scale of the system, that is, Tm= ��+�� /N �N=1,2 , ¯ �, where Tm is the mean
period of the oscillation and � is a small constant compared with the delay time �. Further, our numerical
simulation shows that, when the system has a characteristic period T0 under the feedback with time delay, there
exists an asymptotical line �=�0T0 ��0 independent of any parameters� in the entrainment region with increas-
ing strength of the feedback control c; when the system has no characteristic period, the above linear relation
is also kept, and � decreases with increasing c.
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I. INTRODUCTION

Delayed feedback is common to numerous biological �1�,
physiological �2�, and electronic systems �3�, and it may
change the dynamic behavior of a system dramatically. It is
well known that delayed feedback is one of the most efficient
measures in enhancing the regularity of a system and can be
used as a powerful method to control chaos or turbulence via
stabilizing the unstable periodic orbits �UPOs� embedded in
the chaotic attractor �4�. On the other hand, in a minimal
bromate oscillator �MBO� system �5�, a nonlinear delayed
feedback controlling the flow rate of one reactant can cause
Hopf bifurcation, period doubling, and bifurcation into
chaos. A positive electrical feedback in the oscillating
Belousov-Zhabotinsky �BZ� reaction is found to have an ef-
fect on the Hopf points �6�.

The BZ reaction is one of the pioneering experimental
systems for nonlinear dynamics and is widely used in re-
search. The photosensitive ruthenium�II�-tris�bipyridine�-
catalyzed BZ reaction is used to study spiral wave dynamics
under feedback control �7� and frequency-locking phenom-
ena of propagating wave fronts by changing the external il-
lumination intensity �8�. The major dynamics is described by
a set of differential equations known as the modified Orego-
nator accounting for the light sensitivity �9�, which has a
subcritical Hopf bifurcation when the light intensity is cho-
sen as the bifurcation parameter. This mathematical model
was used to demonstrate both stochastic resonance for weak-
signal detection �10� and subthreshold firing under periodic
perturbation �11,12�.

Recently, time-delayed feedback was found to steer the
time scales of noise-induced motion by changing the time
delay, when it is used in coherence resonance oscillators
�13�. A similar behavior was found by Balanov et al. �14�,
which shows that the characteristic features of noise-induced
spatiotemporal patterns can be effectively controlled by ap-
plying delayed feedback. So there exists an important ques-

tion: Is the effect of noise necessary for the entrainment phe-
nomenon? In fact, such an entrainment phenomenon that the
period of the controlled oscillations increases and decreases
as a function of the time delay in a “sawtooth” fashion was
also found in an oscillatory system without noise �15�. So we
consider that in the noisy system the oscillations are sus-
tained by noise and the mean interspike interval of a wave
train is controlled by varying the time delay can be seen as
two phenomena caused by two independent nonlinear
mechanisms. In this paper, we numerically study the nonlin-
ear dynamical behaviors of the Oregonator model with a
Hopf point under the delayed feedback control. In the param-
eter space we observe four different dynamical behaviors and
find that the state of the nonlinear system under feedback
without delay and the original Hopf point of the system un-
der no feedback can be used as hallmarks in predicting the
dynamic behavior. Moreover, when the system has no char-
acteristic period under feedback without time delay, the time
scale of the system is almost determined by the time delay;
in contrast, when the system has a characteristic period under
feedback without time delay in the region, the time scale of
the system is determined by the competition between the
characteristic period and time delay. When the strength of the
feedback is strong enough, the entrainment data asymptoti-
cally fit a perfect linear relation. Both cases demonstrate that
the entrainment of an oscillator’s period by time delay is
quite robust.

II. MODEL

We use the photosensitive Oregonator model as follows
�11�:

�1
dx

dt
= x�1 − x� + y�q − x� − �1� fx + p2��t� , �1�

�2
dy

dt
= 2hz − y�q + x� + �2� f�y0 − y� + p1��t� , �2�
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dz

dt
= x − z − � fz + � p1

2
+ p2���t� �3�

in which x, y, and z are dimensionless concentrations of
HBrO2 �activator�, Br− �inhibitor�, and Ru �bpy�3

3+ �oxidized
catalyst�, respectively. Parameters �1, �2, q, and h are those in
the classical three-variable Oregonator �16�. The parameter
y0 denotes the dimensionless concentration of Br− in the flow
of substrates. The parameters p1 and p2, respectively, repre-
sent the ratio of the photochemical production of inhibitor
and activator over the total photochemical reaction rate.
They are fixed as follows: �1=0.429, �2=2.319�10−3,
q=9.5234�10−5, � f =1.05�10−3, h=0.5, y0=47.619;
p1=0.11185 and p2=0.6890 �11�. The function ��t� stands
for the illumination intensity varying with time t. When ��t�

is a constant �0, this system shows subcritical Hopf bifurca-
tion when �0=9.00�10−4.

Here we care how an oscillatory system reacts to a linear
delayed feedback applied to the external illumination inten-
sity with the concentration of oxidized catalyst z�t−��, in
which � is time delay. So linear delayed feedback is intro-
duced:

��t� = �0 + cz�t − �� , �4�

where c is the strength of delayed feedback control.

III. LINEAR STABILITY

The system has a unique stationary state X0= �x0 ,y0 ,z0�,
which changes with �0 and c. After linearizing the equations
in the vicinity of the fixed point X0, the Jacobian matrix J
can be acquired as follows:

�
1 − 2x0 − y0 − �1� f

�1

q − x0

�1

p2ce−��

�1

− y0

�2

− q − x0 − �2� f

�2

2h + p1ce−��

�2

1 0 − 1 − � f + � p1

2
+ p2�ce−��

�
and the eigenvalue problem is �X=J ·X, where X is the
eigenvector of perturbations. The eigenvalue equation is as
follows:

det	J − �I	 = 0. �5�

When �=0 and c=0.02, the feedback makes the Hopf bifur-
cation point vary from �0=9.00�10−4 to �0=8.58�10−4.

The linear stability analysis also shows that the entrain-
ment phenomenon of the oscillatory period T by � in the
form of a piecewise linear dependence ��+�� /N
�N=1,2 ,3 , ¯ � exists near the unique stationary state of the
system when ��0. Given that the system is oscillatory, we
apply �= i�, where the angular frequency � is a real param-
eter. Substituting it into Eq. �5� and separating the real and
imaginary parts of the eigenvalue equation, we derive the
imaginary part of the equation

	���sin �� + 
���cos �� = f��� ,

where 	���, 
���, f��� are all polynomials of �. The above
equation can be rewritten as

sin��� + ����� =
f���


	2��� + 
2���
.

We can simplify the above equation as

sin��� + ����� = sin������ .

Thus its solution is

��� +
���� − ����

�
� = 2
N .

Since the oscillatory period of the system T=2
 /�, we get
the linear relation between T and �:

T =
2


�
=

�� + �����
N

. �6�

Although the dependence that � has on � is too complex to
be simplified via approximation, numerical calculation
shows that ���� is negligible compared with � and no obvi-
ous dependent relation between � and � can be found. In
contrast, the following simulation results show us how � de-
pends on the parameters.

IV. SIMULATION RESULTS

Using a constant time step �t=0.005, we adopt the
fourth-order Runge-Kutta algorithm to integrate Eqs. �1�–�3�.
Under delayed feedback, the system shows a variety of dy-
namic behaviors. Figure 1 gives us four typical oscillations
of the variable z�t� and the corresponding illumination ��t�
under different parameters. Figure 1�a� shows the regular
pulses. If comparing z�t� with ��t�, one can notice that in
�=78 time units after a pulse in z�t�, ��t� gives a quite large
change and then the system outputs the next pulse 3.9 time
units later. To a certain region of time delay, such regular
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pulses with no tails have the same phase trajectories in the
x-z phase plane. Figure 1�b� illustrates synchronization com-
pletely in phase between the two time series. In Fig. 1�c�, the
quasiperiodic state emerges and there are one or two tail
peaks after a major pulse. At last, Fig. 1�d� shows groups of
pulses. Thus we define the interval between two adjacent
pulses as T and the mean period of group pulses as Tm,
respectively. For regular pulses, Tm=T.

Figure 2 shows the bifurcation diagram in the �0-c plane.
According to the different relationship between Tm and �, the
�0-c plane can be divided into four regions. A linear stability
analysis shows that the feedback without delay ��=0�
changes the Hopf point, plotted in dots. The line dividing
regions I and II is the simulation result which is quite con-
sistent with the dotted one, i.e., the theoretical result. So

under feedback without delay, in region I the system has a
characteristic oscillatory period defined as T0 while in region
II the system is not oscillatory. Moreover, our simulation
indicates that regions II and III are separated by the Hopf
point when c=0. In region IV the system is in the state of
oscillation death, i.e., under any delay no oscillatory state
can be observed.

Figure 3�a� illustrates the variation of Tm /T0 with � /T0 in
region I. Interestingly, when � increases, the variation of the
mean period of the oscillations in the system repeats in T0.
Moreover, when � is less than NT0, delayed feedback can
control the oscillatory behavior of the system �the typical
dynamical behavior is shown in Fig. 1�a�� and the time delay
determines the oscillatory period, in other words, the time
delay entrains the oscillation of the system. When �=NT0,

FIG. 1. Time variations of z�t� �dot lines� and the corresponding
illumination intensity ��t� �solid lines� at different parameters, �a�
�=78, c=0.02, �0=8.5�10−4 in the entrainment region; �b�
�=94, c=0.02, �0=8.5�10−4, where two of them synchronize
completely in phase; �c� �=132.5, c=0.02, �0=8.5�10−4, where
out of synchronization and in the regime of quasiperiodic motion;
�d� �=400, c=0.2, �0=8.5�10−4 the system output group pulses.

FIG. 2. Phase diagram in the parameter space of �0 and feed-
back strength c. Region I is a region that the system has its own
characteristic period T0. The Dotted line between region I and II is
the theoretical solution of Eq. �5� with �=0. Region II the system
shows no immanent oscillatory period. Regions II and III are sepa-
rated by the Hopf point. In region IV the system is in the state of
oscillation death.

FIG. 3. �a� The relation between Tm /T0 and � /T0. The solid
squares are at �0=8.5�10−4, c=0.02, and the circles are at
�0=4.5�10−4, c=0.03. Inset: normalized mean period versus nor-
malized time delay, line Tm=� is plotted for guiding eyes. �b� The
characteristic period T0 versus c at �0=8.5�10−4. �c� The linearly
fitted slope in entrainment regions versus feedback strength c at
�0=8.5�10−4.
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Fig. 1�b� demonstrates the pulses of the system with the
characteristic T0. When ��NT0, no clear variation of Tm
with � can be seen and the system can output nonuniform
pulses as well. Figure 1�c� gives us an example of such qua-
siperiodic behavior.

If we focus on the entrainment regions, after applying the
normalized operation, i.e., shifting the data �X ,Y� in
�N−1,N� to �X−N ,N�Y −1��, and the interesting thing is that
these data, which are under different parameters, lie almost
in a line in the entrainment region, plotted in the inset of Fig.
3�a�. Thus, we can conclude that the entrainment phenom-
enon is quite robust. The asymptotic line is

Tm =
� + T0�0

N
, �7�

where �0=0.042 is a constant while T0 increases with in-
creasing �0 and c as shown in Fig. 3�b�. On the other hand,
such a robust entrainment phenomenon happens when the
coupled strength c is strong enough for different �0. Our
simulation results show that, with increasing c, the entrain-
ment data are gradually close to the fitted line �7�. Figure
3�c� plots the linearly fitted data of the slope K in the entrain-
ment region when c increases. It can be seen that when the
system approaches the bifurcation line, the delayed feedback
asymptotically entrains the oscillation of the system in the
form of Tm�� /N. During this process, the entrainment re-
gion ���NT0� expands and the nonentrainment region
���NT0� with long delay becomes more irregular, especially
next to the bifurcation line dividing regions I and II. More-
over, in the nonentrainment region, more quasiperiodic be-
haviors as shown in Fig. 1�c� can be seen with varying �.

When the system crosses the bifurcation line and comes
into region II, the oscillatory system outputs no pulses when
�=0, i.e., T0 does not exist any more. However, when � is
long enough, the dead system can be oscillatory and the en-
trainment phenomenon can be seen. Figure 4�a� sets an ex-

ample when �0=8.50�10−4. One can see that the time
scale of the system becomes completely determined by the
time delay �, illustrated in dots and the linear relation
Tm= ��+�� /N is perfectly satisfied, where � decreases with
increasing c �shown in Fig. 4�b�� but is independent from �0.
In Fig. 4, we also plotted the relation between T and time
delay � �in circles� and determined that the system outputs
groups of pulses. For example, for N=3, groups are com-
posed of three pulses each of which may have a different
interval as shown in Fig. 1�d�

At last, when �0�9.00�10−4 for any c, the entrainment
phenomenon does not appear in a sawtooth fashion. In this
case, there is no distinction between T and Tm, or rather the
system uniformly outputs regular pulses. In addition, the pe-
riod of oscillation monotonous increases linearly with time
delay in the entrainment region �from �=38 to �=441�,
which is almost unchanged with �0 and c. This relationship
could be described as T=�+�, where � is independent from
�0, but monotonously decreases with increasing c. Typical
dynamic behavior in region III is also shown in Fig. 5. In
region IV, the feedback with any time delay cannot invoke
oscillatory behaviors.

In other words, we observe four different dynamical be-
haviors of the system under the time delayed feedback in the
�0−c plane. We find that the state of the nonlinear system
under feedback without delay and the original Hopf point of
the system under no feedback can be used as hallmarks in
predicting the dynamic behavior. When the system has no
characteristic period under feedback without time delay, the
time scale of the system is almost determined by the time
delay � and simultaneously the slope of the entrainment re-
gion becomes exactly 1 /N �in region II� or 1 �in region III�.
The difference � between the mean period Tm and the time
delay � is quite small and decreases with increasing c. In
contrast, when the system has characteristic period T0 under
feedback without time delay in region I, the time scale of the
system is probably determined by the competition between
the characteristic period T0 and time delay �. Only when

FIG. 4. �a� Typical dynamic behavior in region II. The mean
period Tm�dots� and the interval between two adjacent pulses T
�circles� versus time delay � when c=0.2, �0=8.5�10−4. �b� In
region II, � versus c at �0=8.5�10−4.

FIG. 5. �a� Typical dynamic behavior in region III. The mean
period Tm versus time delay � when c=0.2, �0=9.5�10−4. �b� In
region III, � versus c at �0=9.5�10−4.
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��NT0, the entrainment phenomenon can happen, and when
c is strong enough, the entrainment data asymptotically fit
the perfect linear relation �7�.

To confirm our conjecture, we next consider another case
of regular oscillation that the system is under the external
periodic stimulus and focus on the competition between the
time delay and the external period. Still using Eqs. �1�–�3�,
the function of illumination is chosen as follows:

��t� = �0 + 	Am sin�2
f0t� + c�z�t − �� − z�t�� , �8�

where �0=1.059�10−3�9.00�10−4, 	=0.965, Am
=0.159�10−3. Without the feedback control �c=0�, previous
research �12� demonstrated that the light-sensitive BZ reac-
tion under the external period stimuli appears to be in the 1:2
phase locking state when f0=0.0165 and in the chaotic state
when f0=0.0325. Delayed feedback in the form of c�z�−z� is
chosen so that it does not have an influence on the subcritical
Hopf bifurcation point.

Analogously, an entrainment phenomenon is triggered
when we switched on the feedback loop, where �0=0.042
reappeared, strongly indicating it to be an intrinsic value of
this system �see Fig. 6�. When f0=0.0165, the oscillatory
period is linearly determined by time delay � in the entrain-
ment regions and frequency locking phenomenon 1:2 is
maintained in other regions. For the chaotic state f0
=0.0325, the system can be stabilized in a steady limit cycle
by the time delayed feedback, whose characteristic period
still lies near the linear lines ��+�0 / f0� /N �N=1,2 ,3 , . . . �

though not as well as in the case f0=0.0165, shown in Fig.
6�b�. Here we consider that, for chaotic motion, external
stimuli cannot fix the system’s motion in a characteristic pe-
riod; thus, this causes the deviation from the fitted line,
which assumes f0 as the system’s characteristic frequency.

V. DISCUSSION

Most investigations in the theory of delayed feedback are
devoted to the stabilization of unstable periodic orbits em-
bedded in chaotic attractors of low-dimensional �usually
three-dimensional� systems. However, in this paper, we focus
on the impact that delayed feedback has on a self-sustained
oscillator and find that the dynamic behavior under the de-
layed feedback in global parameter space is divided into four
parts. We also discovered that the state of the nonlinear pho-
tosensitive BZ system under feedback control without delay
and the Hopf point can be used as hallmarks to predict the
dynamic behavior. In addition to this, we observed the robust
entrainment phenomena of oscillations by parametrized time
delayed feedback in the photosensitive BZ reaction. It is well
known that an oscillatory system either has a limit cycle with
a characteristic period, or it exhibits the external period when
frequency locking phenomenon happens under an external
periodic stimuli. Here another kind of oscillatory mode,
whose period is completely determined by delay time, is ob-
served. From a practical point of view, the time delay can
serve as the timer for the system when a time-delayed feed-
back loop is established.

Furthermore, when applying the time-delayed feedback
loop to the Fitzhugh-Nagumo �FHN� model, which repre-
sents the activity of a neuron, we find a similar robust en-
trainment phenomenon. It is well established that the time
delayed feedback is quite common in nonlinear dynamics of
a biological system. In a recent review �17�, the authors de-
scribed how the recurrent discovery of circadian clock genes
on Drosophila uncovered a molecular mechanism associated
with cycling gene expression and these molecular cycles ap-
pear to emerge from delayed feedback. So we conjecture that
the robust entrainment by time delay is probably a strategy to
control the time scale of the system, such as the rhythm of
life activities.
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FIG. 6. Oscillation period Tm vs delay time � for �a�
f0=0.0165 and �b� f0=0.0325 at c=0.02. Dashed lines satisfy the
relationship T= ��+�0T0� /N �N=1,2 ,3 , . . . �, where �0=0.042 and
T0=2 / f0 in �a�; T0= f0 in �b�.
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